解关于x的不等式a(x-1)/x-2>1(a∑R)
1个回答
展开全部
解:划分a,x的界限,排除x=2的情况,分步求:
1。当x>2时,式子变成,a(x-1)>x-2
推导出,
(a-1)x>a-2
(1)当a>1时,x>(a-2)/(a-1)=1-1/(a-1),可知道x是一个小于1的数,则与x>2相交,得出x>2符合要求;
(2)当a=1,则0>a-2,推导出0>-2,满足要求,对于x∈R全集;
(3)当a<1时,上式变成了(1-a)x<2-a,
则:x<(2-a)/(1-a)=1+1/(1-a)
,可知道1+1/(1-a)因此取闭封集合,x<(2-a)/(1-a)
综合以上,得出:x∈(2,2-a/1-a)
2.当x<2时,原来的式子变成:
a(1-x)/(2-x)>1,即:(a-1)x<a-2
(4)当a>1时,x<(a-2)/(a-1)=1-1/(a-1),也就是说x是一个小于1的数,因此对比x<2,选择更小的解:x<(a-2)/(a-1);
(5)当a=1时,得出0<-1,这显然是错误的,所以不存在这样的的x值满足a=1的要求;
(6)当a<1时,(1-a)x>2-a,则x>(2-a)/(1-a)=1+1/(1-a),知道x>2与假设不成立,否决之。
综合1,2得出:x的综合解是:
当a>1时,x<(a-2)/(a-1);
当a=1时,(x-1)/(x-2)>1,即:(x-1)/(x-2)-1>0,-->1/(x-2)>0,推导出x>2
当a<1时,2<x<(2-a)/(1-a)
1。当x>2时,式子变成,a(x-1)>x-2
推导出,
(a-1)x>a-2
(1)当a>1时,x>(a-2)/(a-1)=1-1/(a-1),可知道x是一个小于1的数,则与x>2相交,得出x>2符合要求;
(2)当a=1,则0>a-2,推导出0>-2,满足要求,对于x∈R全集;
(3)当a<1时,上式变成了(1-a)x<2-a,
则:x<(2-a)/(1-a)=1+1/(1-a)
,可知道1+1/(1-a)因此取闭封集合,x<(2-a)/(1-a)
综合以上,得出:x∈(2,2-a/1-a)
2.当x<2时,原来的式子变成:
a(1-x)/(2-x)>1,即:(a-1)x<a-2
(4)当a>1时,x<(a-2)/(a-1)=1-1/(a-1),也就是说x是一个小于1的数,因此对比x<2,选择更小的解:x<(a-2)/(a-1);
(5)当a=1时,得出0<-1,这显然是错误的,所以不存在这样的的x值满足a=1的要求;
(6)当a<1时,(1-a)x>2-a,则x>(2-a)/(1-a)=1+1/(1-a),知道x>2与假设不成立,否决之。
综合1,2得出:x的综合解是:
当a>1时,x<(a-2)/(a-1);
当a=1时,(x-1)/(x-2)>1,即:(x-1)/(x-2)-1>0,-->1/(x-2)>0,推导出x>2
当a<1时,2<x<(2-a)/(1-a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询