圆锥曲线中y1y2结论
高考圆锥曲线中抛物线结论问题就是有一些列圆锥曲线中抛物线方程过焦点直线与抛物线交A,B两点,焦点为F,A(x1,y1)B(x2,y2),y²=2px(p>0),...
高考圆锥曲线中抛物线结论问题
就是有一些列圆锥曲线中抛物线方程过焦点直线与抛物线交A,B两点,焦点为F,A(x1,y1)B(x2,y2),y²=2px(p>0),直线AB的倾斜角为α,则有y1y2=-p²,x1x2=p²/4,AB=2p/sin²α,1/FA+1/FB=2/p,
请问:如果换成y²=-2px(p>0),这些式子仍然成立吗?如果有不一样就写出来.(希望大家回答负责任点,我是拿这个结论去高考,不要欺骗我哦!)
当然,最好也说下焦点在X轴上的抛物线对应的结论又是什么.我的高考成功,就是你的积极参与. 展开
就是有一些列圆锥曲线中抛物线方程过焦点直线与抛物线交A,B两点,焦点为F,A(x1,y1)B(x2,y2),y²=2px(p>0),直线AB的倾斜角为α,则有y1y2=-p²,x1x2=p²/4,AB=2p/sin²α,1/FA+1/FB=2/p,
请问:如果换成y²=-2px(p>0),这些式子仍然成立吗?如果有不一样就写出来.(希望大家回答负责任点,我是拿这个结论去高考,不要欺骗我哦!)
当然,最好也说下焦点在X轴上的抛物线对应的结论又是什么.我的高考成功,就是你的积极参与. 展开
展开全部
对y²=-2px(p>0),
可推导出同样的结论:y1y2=-p²,x1x2=p²/4,AB=2p/sin²α,1/FA+1/FB=2/p.
由 y1²=-2px1,y2²=-2px2 有 A(-y1²/2p,y1)、B(-y2²/2p,y2) F(-p/2,0)
AB倾斜角不为90度时,斜率:K(FA)=K(FB)
y1/((-y1²/2p+p/2)=y2/((-y2²/2p+p/2)
整理即得:y1y2=-p².
AB倾斜角为90度时,x1=x2=-p/2 y1=-y2 y1y2
可推导出同样的结论:y1y2=-p²,x1x2=p²/4,AB=2p/sin²α,1/FA+1/FB=2/p.
由 y1²=-2px1,y2²=-2px2 有 A(-y1²/2p,y1)、B(-y2²/2p,y2) F(-p/2,0)
AB倾斜角不为90度时,斜率:K(FA)=K(FB)
y1/((-y1²/2p+p/2)=y2/((-y2²/2p+p/2)
整理即得:y1y2=-p².
AB倾斜角为90度时,x1=x2=-p/2 y1=-y2 y1y2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |