函数单调性怎么证明
1个回答
展开全部
如何证明函数单调性
最佳答案
判定函数在某个区间上的单调性的方法步骤有两种主要方法:
定义法:
1. 设任意x1、x2∈给定区间,且x1<x2.
2. 计算f(x1)- f(x2)至最简。【最好表示为整式乘积的形式】
3. 判断上述差的符号。
求导法:
利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是严格增函数,导函数值小于0,说明是严格减函数,前提是原函数必须是连续的。当导数大于等于0时也可为增函数,同理当导数小于等于0时也可为减函数。

扩展资料:
有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。
在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。
如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开。
参考资料:单调性-搜狗百科
最佳答案
判定函数在某个区间上的单调性的方法步骤有两种主要方法:
定义法:
1. 设任意x1、x2∈给定区间,且x1<x2.
2. 计算f(x1)- f(x2)至最简。【最好表示为整式乘积的形式】
3. 判断上述差的符号。
求导法:
利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是严格增函数,导函数值小于0,说明是严格减函数,前提是原函数必须是连续的。当导数大于等于0时也可为增函数,同理当导数小于等于0时也可为减函数。

扩展资料:
有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。
在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。
如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开。
参考资料:单调性-搜狗百科
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询