一道微积分?
4个回答
展开全部
化成极坐标x=rcosθ,y=rsinθ
0≤rcosθ≤1 可得 0 ≤ r≤1
1-rcosθ≤rsinθ≤∨(1-r²cos²θ)
可得1/(cosθ+sinθ)≤r≤1
所以r的范围为1/(cosθ+sinθ)≤r≤1
θ∈[0,π/2]
所求=∫(0,π/2) dθ∫(1/(sinθ+cosθ),1) 1/r²dr
=∫(0,π/2) (-1/r|(1/(sinθ+cosθ),1))dθ
=∫(0,π/2) (sinθ+cosθ-1)dθ
=(-cosθ+sinθ-θ)|(0,π/2)
=1-π/2+1
=2-π/2
0≤rcosθ≤1 可得 0 ≤ r≤1
1-rcosθ≤rsinθ≤∨(1-r²cos²θ)
可得1/(cosθ+sinθ)≤r≤1
所以r的范围为1/(cosθ+sinθ)≤r≤1
θ∈[0,π/2]
所求=∫(0,π/2) dθ∫(1/(sinθ+cosθ),1) 1/r²dr
=∫(0,π/2) (-1/r|(1/(sinθ+cosθ),1))dθ
=∫(0,π/2) (sinθ+cosθ-1)dθ
=(-cosθ+sinθ-θ)|(0,π/2)
=1-π/2+1
=2-π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询