这个极限如何求解
1个回答
展开全部
x->0+
2^x = 1+(ln2)x+o(x)
3^x = 1+(ln3)x+o(x)
..
2020^x =1+(ln2020)x+o(x)
[1^(x)+2^(x)+...+(1/2020)^(x)]/2020 =1 + (1/2020)[ln(2020!)]x +o(x)
lim(n->∞) { [1^(1/n)+2^(1/n)+...+(1/2020)^(1/n)]/2020 } ^n
consider
lim(y->∞) { [1^(1/y)+2^(1/y)+...+(1/2020)^(1/y)]/2020 } ^y
x=1/y
=lim(x->0+) { [1^(x)+2^(x)+...+(1/2020)^(x)]/2020 } ^(1/x)
=lim(x->0+) { 1 + (1/2020)[ln(2020!)]x }^(1/x)
=e^[(1/2020).ln(2020!)]
=(2020!)^(1/2020)
ie
lim(n->∞) { [1^(1/n)+2^(1/n)+...+(1/2020)^(1/n)]/2020 } ^n =(2020!)^(1/2020)
2^x = 1+(ln2)x+o(x)
3^x = 1+(ln3)x+o(x)
..
2020^x =1+(ln2020)x+o(x)
[1^(x)+2^(x)+...+(1/2020)^(x)]/2020 =1 + (1/2020)[ln(2020!)]x +o(x)
lim(n->∞) { [1^(1/n)+2^(1/n)+...+(1/2020)^(1/n)]/2020 } ^n
consider
lim(y->∞) { [1^(1/y)+2^(1/y)+...+(1/2020)^(1/y)]/2020 } ^y
x=1/y
=lim(x->0+) { [1^(x)+2^(x)+...+(1/2020)^(x)]/2020 } ^(1/x)
=lim(x->0+) { 1 + (1/2020)[ln(2020!)]x }^(1/x)
=e^[(1/2020).ln(2020!)]
=(2020!)^(1/2020)
ie
lim(n->∞) { [1^(1/n)+2^(1/n)+...+(1/2020)^(1/n)]/2020 } ^n =(2020!)^(1/2020)
追问
不好意思,好像和的时候不能用等价无穷小代换吧?
追答
如果我说那是泰勒公式,那不能“+” “-”的限制是否失效?
等价无穷小是来自泰勒公式,能否“+” “-”那就看应用得对不对?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询