1个回答
展开全部
y=sinx+cosx,
y'=cosx-sinx=-√2sin(x-π/4)
y'>0,sin(x-π/4)小于0,得2kπ-π<x-π/4<2kπ,2kπ-3π/4<x<2kπ+π/4,即单调递增区间为(2kπ-3π/4,2kπ+π/4),k∈Z.
y'<0,sin(x-π/4)>0,得2kπ<x-π/4<2kπ+π,2kπ+π/4<x<2kπ+5π/4,即单调递减区间为(2kπ+π/4,2kπ+5π/4),k∈Z.
y'=0,得x-π/4=kπ,即x=kπ+π/4,
当x=2tπ+π/4时,y=√2,即y极大值=√2,
当x=2tπ+5π/4时,y=-√2,即y极小值=-√2
y'=cosx-sinx=-√2sin(x-π/4)
y'>0,sin(x-π/4)小于0,得2kπ-π<x-π/4<2kπ,2kπ-3π/4<x<2kπ+π/4,即单调递增区间为(2kπ-3π/4,2kπ+π/4),k∈Z.
y'<0,sin(x-π/4)>0,得2kπ<x-π/4<2kπ+π,2kπ+π/4<x<2kπ+5π/4,即单调递减区间为(2kπ+π/4,2kπ+5π/4),k∈Z.
y'=0,得x-π/4=kπ,即x=kπ+π/4,
当x=2tπ+π/4时,y=√2,即y极大值=√2,
当x=2tπ+5π/4时,y=-√2,即y极小值=-√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询