函数f(x)=2x-1/x的单调递增区间
1个回答
展开全部
f(x)=2x-(1/x)
1、定义域是(-∞,0)∪(0,+∞);
2、此函数是奇函数,故只要研究x>0时的单调性即可。
取x1>x2>0,则:f(x1)-f(x2)=[x1-(1/x1)]-[x2-(1/x2)]=(x1-x2)+[x1-x2]/(x1x2)=(x1-x2)[1+(1/x1x2)]
因为x1>x2>0,则:x1-x2>0,1+(1/x1x2)>0,即:f(x1)-f(x2)>0,从而有:
f(x1)>f(x2)
所以函数f(x)=x-(1/x)在区间(0,+∞)上递增。考虑到此函数是奇函数,则f(x)在区间(-∞,0)上也递增。
总结:函数f(x)的递增区间是(-∞,0),(0,+∞)
【注】单调区间绝对不可并!!!!!
1、定义域是(-∞,0)∪(0,+∞);
2、此函数是奇函数,故只要研究x>0时的单调性即可。
取x1>x2>0,则:f(x1)-f(x2)=[x1-(1/x1)]-[x2-(1/x2)]=(x1-x2)+[x1-x2]/(x1x2)=(x1-x2)[1+(1/x1x2)]
因为x1>x2>0,则:x1-x2>0,1+(1/x1x2)>0,即:f(x1)-f(x2)>0,从而有:
f(x1)>f(x2)
所以函数f(x)=x-(1/x)在区间(0,+∞)上递增。考虑到此函数是奇函数,则f(x)在区间(-∞,0)上也递增。
总结:函数f(x)的递增区间是(-∞,0),(0,+∞)
【注】单调区间绝对不可并!!!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询