三角函数公式是什么?
反三角函数公式
1、arcsin(-x)=-arcsinx。
2、arccos(-x)=π-arccosx。
3、arctan(-x)=-arctanx。
4、arccot(-x)=π-arccotx。
5、arcsinx+arccosx=π/2=arctanx+arccotx。
6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。
7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。
8、当x∈〔0,π〕,arccos(cosx)=x。
9、x∈(—π/2,π/2),arctan(tanx)=x。
10、x∈(0,π),arccot(cotx)=x。
11、x〉0,arctanx=arctan1/x。
12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。
数学三角函数公式如下:
一、倍角公式。
1、Sin2A=2SinA*CosA。
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1。
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))。
二、降幂公式。
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2。
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))。
三、推导公式。
1、1tanα+cotα=2/sin2α。
2、tanα-cotα=-2cot2α。
3、1+cos2α=2cos^2α。
4、、4-cos2α=2sin^2α。
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina。
四、两角和差。
1、1cos(α+β)=cosα·cosβ-sinα·sinβ。
2、cos(α-β)=cosα·cosβ+sinα·sinβ。
3、sin(α±β)=sinα·cosβ±cosα·sinβ。
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。
五、和差化积。
1、sinθ+sinφ=2 sin cos。
2、sinθ-sinφ=2 cos sin。
3、cosθ+cosφ=2 cos cos。
4、cosθ-cosφ=-2 sin sin。
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)。
1、sin(-α)=-sinα
2、cos(-α)=cosα
3、sin(π/2-α)=cosα
4、cos(π/2-α)=sinα
5、sin(π/2+α)=cosα
6、cos(π/2+α)=-sinα
7、sin(π-α)=sinα
8、cos(π-α)=-cosα
9、sin(π+α)=-sinα
10、tanα=sinα/cosα
11、tan(π/2+α)=-cotα
12、tan(π/2-α)=cotα
13、tan(π-α)=-tanα
14、tan(π+α)=tanα
扩展资料:
常用的和角公式
1、sin(α+β)=sinαcosβ+ sinβcosα
2、sin(α-β)=sinαcosβ-sinB*cosα
3、cos(α+β)=cosαcosβ-sinαsinβ
4、cos(α-β)=cosαcosβ+sinαsinβ
5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 vercosθ =1-sinθ
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
1.sinα^2 +cosα^2=1
2.sinα/cosα=tanα
3.tanα=1/cotα
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
常用公式
口诀;奇变偶不变,符号看象限
一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB