多元函数如何求极限?

 我来答
帐号已注销
2021-04-30 · TA获得超过25.9万个赞
知道小有建树答主
回答量:2206
采纳率:96%
帮助的人:82.9万
展开全部

多元函数的极限在高等数学中是非常重要的,但多元函数的自变量太多计算起来太过复杂,而一元函数的极限看起来就相对容易些,因此把多元函数极限转化为一元函数的极限来求解。

例如:

1、lim(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²

= lim(u->0) sinu / u = 1

2、f(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x| 

lim(x,y)->(0,0) |x| = 0 

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

多元函数求极限定理介绍

定理1:设f(x,y,z)在点(x0,y0,z0)的某去心邻域内有定义,cosα,cosβ,cosγ是向量(x-x0,y-y0,z-z0)的方向余弦,若limk0f(x0+kcosα,y0+kcosβ,z0+kcosγ)=A则

(1)当A是与α,β,γ的取值无关的常数时,limxx0yy0zz0f(x,y,z)=A。

(2)当A是与α,β,γ的取值有关的常数时,limxx0yy0zz0f(x,y,z)不存在。

推论(1)设f(x,y,z)在点(0,0,0)的某去心邻域内有定义,cosα,cosβ,cosγ是向量(x,y,z)的方向余弦,若limk0f(kcosα,kcosβ,kcosγ)=A则

(1)当A是与α,β,γ的取值无关的常数时,limxx0yy0zz0f(x,y,z)=A。

(2)当A是与α,β,γ的取值有关的常数时,limxx0yy0zz0f(x,y,z)不存在。

以上内容参考 百度百科—极限

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式