sinx分之一的不定积分是什么?
∫1/(sinx)dx
=∫cscxdx
=∫sinx/(1-cos²x) dx
=-∫dcosx/(1-cos²x)
=-1/2[∫dcosx/(1-cosx)+∫dcosx/(1+cosx)]
= -1/2[∫-d(1-cosx)/(1-cosx)+∫d(1+cosx)/(1+cosx)]
=-1/2ln(1+cosx)/ (1-cosx)+C
=ln[(1-cosx)/sinx]+C
=ln(cscx-cotx)+C
不定积分常用公式:
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;
2021-01-25 广告
∫1/(sinx)dx
=∫cscxdx
=∫sinx/(1-cos²x) dx
=-∫dcosx/(1-cos²x)
=-1/2[∫dcosx/(1-cosx)+∫dcosx/(1+cosx)]
= -1/2[∫-d(1-cosx)/(1-cosx)+∫d(1+cosx)/(1+cosx)]
=-1/2ln(1+cosx)/ (1-cosx)+C
=ln[(1-cosx)/sinx]+C
=ln(cscx-cotx)+C
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C