2个回答
展开全部
g(x)=(2lnx-2lna)/(x-a),后面a>0,x>0,且x≠a,是函数g(x)的定义域问题:lnx是以无理数e
为底的对数,e是正数,以正数为底负数没有对数,故规定a>0,x>0;否则llnx,lna无意义。
又x≠a,是因为若x=a,则g(x)变成0/0,这是不定式,可以等于任何值,函数g(x)无意义,故
规定x≠a;
g(x)是个分式v/u,其导数用公式:(v/u)'=(uv'-vu')/u²;
∴g'(x)=[(x-a)(2lnx-2lna)'-(2lnx-2lna)(x-a)']/(x-a)²
=[(x-a)(2/x-0)-(2lnx-2lna)(1-0)]/(x-a)²=[(2/x)x-a)-(2lnx-lna)(1-0)]/(x-a)²
=[(2/x)(x-a)-(2lnx-2lna)]/(x-a)²=[2(x-a)-x(2lnx-2lna)]/[x(x-a)²]
=(2x-2a-2xlnx+2xlna)/[x(x-a)²]=(2x-2xlnx-2a+2xlna)/[x(x-a)²];
为底的对数,e是正数,以正数为底负数没有对数,故规定a>0,x>0;否则llnx,lna无意义。
又x≠a,是因为若x=a,则g(x)变成0/0,这是不定式,可以等于任何值,函数g(x)无意义,故
规定x≠a;
g(x)是个分式v/u,其导数用公式:(v/u)'=(uv'-vu')/u²;
∴g'(x)=[(x-a)(2lnx-2lna)'-(2lnx-2lna)(x-a)']/(x-a)²
=[(x-a)(2/x-0)-(2lnx-2lna)(1-0)]/(x-a)²=[(2/x)x-a)-(2lnx-lna)(1-0)]/(x-a)²
=[(2/x)(x-a)-(2lnx-2lna)]/(x-a)²=[2(x-a)-x(2lnx-2lna)]/[x(x-a)²]
=(2x-2a-2xlnx+2xlna)/[x(x-a)²]=(2x-2xlnx-2a+2xlna)/[x(x-a)²];
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询