圆的半径是什么?
这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。通过延伸,直径d定义为半径的两倍:d=2r。
在古典几何中,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。
半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。通过延伸,直径d定义为半径的两倍:d=2r。
2024-08-11 广告
圆的半径公式:r=1/2√(D²+E²-4F)。圆的一般方程是x²+y²+Dx+Ey+F=0(D²+E²-4F>0),其中圆心坐标是(-D/2,-E/2)。
在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点。
因为圆是所有到圆心的距离等于半径的点的集合。
所以√[(x-a)²+(y-b)²]=r
两边平方,得到
即(x-a)²+(y-b)²=r²
圆的方程的半径公式r=√[(x-a)²+(y-b)²]
扩展资料:
同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。
所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)
圆的半径公式是r=d/2。
半径公式为:r=d/2,d是直径。直径是指通过一平面或立体图形中心到边上两点间的距离,通常用字母“d”表示,连接圆周上两点并通过圆心的直线称圆直径,连接球面上两点并通过球心的直线称球直径。而半径就是直径的一半,所以半径=直径*0.5。
圆的性质:
1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
2、如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
3、弦切角的度数等于它所夹的弧的度数的一半。
4、圆内角的度数等于这个角所对的弧的度数之和的一半。
5、圆外角的度数等于这个角所截两段弧的度数之差的一半。
6、周长相等,圆面积比正方形、长方形、三角形的面积大。
在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点。
因为圆是所有到圆心的距离等于半径的点的集合。
所以√[(x-a)²+(y-b)²]=r
两边平方,得到
即(x-a)²+(y-b)²=r²
圆的方程的半径公式r=√[(x-a)²+(y-b)²]
扩展资料:
同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。
所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)