各位大神 帮我求一下下面的三个不定积分,请写下详细过程 在线等,很急!!!!!!!!!!
1个回答
展开全部
(1)
let
u=arctan√x
du = [1/(1+x)].[1/(2√x)] dx
dx/[√x.(1+x) ] = 2du
∫ (arctan√x)^2/[√x.(1+x) ] dx
=∫ u^2 . [2du]
=2∫ u^2 du
=(2/3)u^3 +C
=(2/3)[arctan√x]^3 +C
(2)
∫ [x+(arctanx)^2]/(1+x^2) dx
=∫ x/(1+x^2) dx +∫ (arctanx)^2/(1+x^2) dx
=(1/2)∫ d(1+x^2)/(1+x^2) +(1/3)∫ d(arctanx)^3
=(1/2)ln|1+x^2| +(1/3)(arctanx)^3 +C
(3)
let
x=sinu
dx=cosu du
∫dx/ [x+√(1-x^2)]
=∫cosu / (sinu+cosu) du
=(1/2)∫ [(sinu+cosu) +(cosu -sinu)] / (sinu+cosu) du
=(1/2)∫ [1 +(cosu -sinu)/(sinu+cosu)] du
=(1/2)u + (1/2)∫ (cosu -sinu)/(sinu+cosu) du
=(1/2)u + (1/2)∫ d(sinu+cosu)/(sinu+cosu)
=(1/2)u + (1/2)ln|sinu+cosu| +C
=(1/2)arcsinx + (1/2)ln|x+√(1-x^2)| +C
let
u=arctan√x
du = [1/(1+x)].[1/(2√x)] dx
dx/[√x.(1+x) ] = 2du
∫ (arctan√x)^2/[√x.(1+x) ] dx
=∫ u^2 . [2du]
=2∫ u^2 du
=(2/3)u^3 +C
=(2/3)[arctan√x]^3 +C
(2)
∫ [x+(arctanx)^2]/(1+x^2) dx
=∫ x/(1+x^2) dx +∫ (arctanx)^2/(1+x^2) dx
=(1/2)∫ d(1+x^2)/(1+x^2) +(1/3)∫ d(arctanx)^3
=(1/2)ln|1+x^2| +(1/3)(arctanx)^3 +C
(3)
let
x=sinu
dx=cosu du
∫dx/ [x+√(1-x^2)]
=∫cosu / (sinu+cosu) du
=(1/2)∫ [(sinu+cosu) +(cosu -sinu)] / (sinu+cosu) du
=(1/2)∫ [1 +(cosu -sinu)/(sinu+cosu)] du
=(1/2)u + (1/2)∫ (cosu -sinu)/(sinu+cosu) du
=(1/2)u + (1/2)∫ d(sinu+cosu)/(sinu+cosu)
=(1/2)u + (1/2)ln|sinu+cosu| +C
=(1/2)arcsinx + (1/2)ln|x+√(1-x^2)| +C
追问
问一下1/2是怎么来的,还有分子上的cosu怎么不见了
追答
(sinu+cosu) +(cosu -sinu)=2cosu
cosu =(1/2)[(sinu+cosu) +(cosu -sinu)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询