快速排序
基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
下面通过一个例子介绍快速排序算法的思想,假设要对数组a[10]={6,1,2,7,9,3,4,5,10,8}进行排序,首先要在数组中选择一个数作为基准值,这个数可以随意选择,在这里,我们选择数组的第一个元素a[0]=6作为基准值,接下来,我们需要把数组中小于6的数放在左边,大于6的数放在右边,怎么实现呢?
我们设置两个“哨兵”,记为“哨兵i”和“哨兵j”,他们分别指向数组的第一个元素和最后一个元素,即i=0,j=9。首先哨兵j开始出动,哨兵j一步一步地向左挪动(即j–),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。
最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。此时就需要交换i和j指向的元素的值。
交换之后的数组变为a[10]={6,1,2,5,9,3,4,7,10,8}:
第一次交换至此结束。接下来,由于哨兵i和哨兵j还没有相遇,于是哨兵j继续向前,发现比6小的4之后停下;哨兵i继续向前,发现比6大的9之后停下,两者再进行交换。交换之后的数组变为a[10]={6,1,2,5,4,3,9,7,10,8}。
第二次交换至此结束。接下来,哨兵j继续向前,发小比6小的3停下来;哨兵i继续向前,发现i==j了!!!于是,这一轮的探测就要结束了,此时交换a[i]与基准的值,数组a就以6为分界线,分成了小于6和大于6的左右两部分:a[10]={3,1,2,5,4,6,9,7,10,8}。
至此,第一轮快速排序完全结束,接下来,对于6左边的半部分3,1,2,5,4,执行以上过程;对于6右边的半部分9,7,10,8,执行以上过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列:1 2 3 4 5 6 7 8 9 10,到此,排序完全结束。
快速排序的一次划分算法从两头交替搜索,直到low和hight重合,因此其时间复杂度是O(n);而整个快速排序算法的时间复杂度与划分的趟数有关。
理想的情况是,每次划分所选择的中间数恰好将当前序列几乎等分,经过log 2 n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为O(nlog 2 n)。
最坏的情况是,每次所选的中间数是当前序列中的最大或最小元素,这使得每次划分所得的子表中一个为空表,另一子表的长度为原表的长度-1。这样,长度为n的数据表的快速排序需要经过n趟划分,使得整个排序算法的时间复杂度为O(n 2 )。
为改善最坏情况下的时间性能,可采用其他方法选取中间数。通常采用“三者值取中”方法,即比较H->r[low].key、H->r[high].key与H->r[(low+high)/2].key,取三者中关键字为中值的元素为中间数。
可以证明,快速排序的平均时间复杂度也是O(nlog 2 n)。因此,该排序方法被认为是目前最好的一种内部排序方法