f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积

 我来答
户如乐9318
2022-06-13 · TA获得超过6678个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
有理数域:
f(x)=(x^10-1)/(x-1)=(x^5-1)(x^5+1)/(x-1)=(x+1)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1).
那两个四次项没法再约了,原因是根都是复数,看了实数域分解就明白了.
实数域:
f(x)=(x+1)(x^2-2cos(pi/5*2)x+1)(x^2-2cos(pi/5*4)x+1)(x^2-2cos(pi/5)x+1)(x^2-2cos(pi/5*3)x+1).
因为f(x)=(x^10-1)/(x-1),x^10-1=0的根都是复数exp(j*2*pi/10*k),一个个列出来再把共轭的那些对儿组合下就可以了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式