2.求数列7/3,37/9,163/27……(2n+1/3^n)的前n项和Sn
展开全部
an=(2n+1)/3^n,sn-s(n-1)=(2n+1)/3^n
sn*3^n-3s(n-1)*3^(n-1)=2n+1
sn*3^n=3s(n-1)*3^(n-1)+2n+1
sn*3^n+n=3(s(n-1)*3^(n-1)+n-1)+4
sn*3^n+n+2=3(s(n-1)*3^(n-1)+(n-1)+2)
bn=sn*3^n+n+2,b1=s1*3n+1+2=3*a1+3=6
bn=6*3^(n-1)=2*3^n
sn*3^n+n+2=2*3^n
sn=2-(n+2)/3^n
sn*3^n-3s(n-1)*3^(n-1)=2n+1
sn*3^n=3s(n-1)*3^(n-1)+2n+1
sn*3^n+n=3(s(n-1)*3^(n-1)+n-1)+4
sn*3^n+n+2=3(s(n-1)*3^(n-1)+(n-1)+2)
bn=sn*3^n+n+2,b1=s1*3n+1+2=3*a1+3=6
bn=6*3^(n-1)=2*3^n
sn*3^n+n+2=2*3^n
sn=2-(n+2)/3^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询