证明两个增函数的和为增函数
1个回答
展开全部
用定义法即可.
令h(x)=f(x) + g(x),其中f(x),g(x) 都为增函数.
令X2>X1,那么 h(x2) - h(x1) = f(x2) + g(x2) - [f(x1) + g(x)]
=[f(x2) - f(x1)]+[g(x2) - g(x1)]
因为f(x),g(x) 都为增函数,所以
f(x2) - f(x1)> 0 ,g(x2) - g(x1)> 0
因此 h(x2) - h(x1)> 0
所以命题得证 .
令h(x)=f(x) + g(x),其中f(x),g(x) 都为增函数.
令X2>X1,那么 h(x2) - h(x1) = f(x2) + g(x2) - [f(x1) + g(x)]
=[f(x2) - f(x1)]+[g(x2) - g(x1)]
因为f(x),g(x) 都为增函数,所以
f(x2) - f(x1)> 0 ,g(x2) - g(x1)> 0
因此 h(x2) - h(x1)> 0
所以命题得证 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询