如何证明 tan^-1(x)-tan^-1(x-1/x+1)=π/4,x>-1?
1个回答
展开全部
tan(tan^-1(x-1/x+1)+π/4)
=(tan(tan^-1(x-1/x+1))+tan(π/4))/(1-tan(tan^-1(x-1/x+1))tan(π/4))
=((x-1)/(x+1)+1)/(1-(x-1)/(x+1))
=x
故等式两边同时取tan^-1,有
tan^-1(x-1/x+1)+π/4=tan^-1(x)
即 tan^-1(x)-tan^-1(x-1/x+1)=π/4,
=(tan(tan^-1(x-1/x+1))+tan(π/4))/(1-tan(tan^-1(x-1/x+1))tan(π/4))
=((x-1)/(x+1)+1)/(1-(x-1)/(x+1))
=x
故等式两边同时取tan^-1,有
tan^-1(x-1/x+1)+π/4=tan^-1(x)
即 tan^-1(x)-tan^-1(x-1/x+1)=π/4,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询