5-1÷6-12分之5×2简便计算?
2022-03-30
展开全部
参考答案:
一、填空题(茵苗教育)
1、分数的意义:既可以表示一个(数值),也可以表示两个数之间的(倍比)关系。
2、分数的读法:先读(分母),再读“分之”,最后读(分子),分子和分母按照整数读法来读。
3、百分数是分母为(100)的分数的一种特殊形式。
4、百分数表示(两个量)之间一种(比)的关系,表示一个数是另一个数的(百分之几)。
5、百分数的写法:先写(分子),再写(%)。
6、百分数的读法:先读(%),再读(分子)。
7、由于百分数只能表示两个量之间的(倍比)关系,在生活中也叫(百分率)或(百分比)。
8、27%读作(百分之二十七);0.075%读作(百分之零点零七五)。
9、我国森林面积约占陆地面积的百分之二十一点六三。
百分之二十一点六三 写作(21.63%)。
10、调查,人们在日常生活所产生的垃圾中,可以利用的废弃纸张约占百分之二十八点七,废弃金属约占百分之十六点四。
百分之二十八点七 写作(28.7%);
百分之十六点四 写作(16.4%)。
二,选择题(茵苗教育)
11、下列各分数哪些可以用百分数表示(B)。
B、某校六年级学生人数约占全校总人数的10035 。
12、某服装店上半年完成全年计划55%的销售量,下半年完成了全年计划72%的销售量,这一年超额完成了全年计划(C)的销售量。
C、27%
13、仓库的大米用去55%,还剩(A)。
A、45%
三、应用题
14、(1)我国某地区六月份的降水量是100175mm。
答:这里降水量不能用百分数表示,只能用分数表示。
(2)某校六年级男生人数占六年级全体人数的10047。
答:这里的两个量表示的是两个量整体与部分的关系,可以用百分数表示,为47%。
(3)某件衬衣中,棉纤维含量占总成分的10075。
答:这里的两个量表示的是两个量整体与部分的关系,可以用百分数表示,表示为75%。
15、1-46%=54% 54%-46%=8%
答:还剩下54%,剩下的铁丝比用去的铁丝多全长的8%。
参考答案:
一、填空题
1、小数化成百分数的方法:把(小数点)向右移动(两)位,加上百分号。
2、分数化成百分数的方法:
(1)分母能直接化成100:先把分数改写成(分母是100)的分数,再把分母是(100)的分数化成百分数;
(2)分母不能直接化成100:先把分数化成(小数),再把(小数)化成百分数。
3、百分数化成小数,可以先把百分数写成分母是(100)的分数,再把(分数)化成小数;也可以把(百分号)去掉,同时把(小数点)向(左)移动两位,位数不够时,用(0)补足。
4、百分数化成分数,把百分数写成(分母是100)的分数,能约分的一定要约成最简分数。
5、“求一个数的几分之几”的解题方法:这个数(单位“1”的量)×几分之几。
6、在图书馆阅读的男生有50人,女生有40人,男生人数相当于女生人数的(125)%。
7、一本60页的故事书,3天读了45页,读了(75)%,还剩(25)%没读。
8、六(1)班由50人,今天出勤48人,出勤率是(96%)。
二、选择题
9、1÷7的商化为百分数约是(C)。
C、14.3%
10、把75%化成分数是(B)。
B、43
11、下面的式子正确的是(A)。
A、45%>0.34
12、六年(1)班今天的出勤率是80%,六年(2)今天出勤的人数占六年(2)班总人数的5045,哪个班级的出勤率高?(B)
B、六年(2)班
三、应用题
13、55-5=50(万)5÷50×100%=10%
答:比计划增加了10%。
14、15.2÷100×100%=15.2% 405÷1000×100%=40.5%
15.2%<40.5%
答:花生含油量高。
15、设圆的半径是r。圆的面积是Πr2,正方形的面积是4r2.
Πr2÷4r2×100%=3.14r2÷4r2×100%=78.5%
答:圆的面积占正方形面积的78.5%。
参考答案:
一、填空题
1、“求一个数比另一个数多(少)百分之几”的问题与“求一个数比另一个数多(少)几分之几”的问题的解题方法(相同),只是把(分数)换成(百分数)。
2、求比一个数多(少)百分之几,先求一个数比(另一个数)多(或少)的具体量,再除以(标准量)。
3、求比一个数多(少)百分之几,可以把另一个量看作(单位“1”),即100%,先求一个数是另一个数的(百分之几),再根据所求问题把两者相减。
4、通常在“占”“是”“比”“相当于”的后面的那个量就是(单位“1”)的量。
5、甲、乙两数的比是3:4,甲数比乙数少(25)%。
6、有两杯饮料,甲比乙多41,乙比甲少(25)%,甲是乙的(125)%。
7、某果园去年苹果产量是500kg,今年增加到650kg,今年增加了(30)%。
8、某果园去年苹果产量是500kg,今年增加了650kg,今年增加了(130)%。
二、选择题
9、一件商品,原价80元,现降价20元,降了(C)。
C、25%
10、25m增加20%后,又减少20%,结果是(B)m。
B、24
11、一个项目,小明计划5天完成,实际4天完成,工作效率提高了(A)。
A、25%
12、一条裙子降价30元,现价90元,降价幅度是(B)
B、25%
三、应用题
13、5800×(1+20%)=6960(元)
答:妈妈买这把琴花了6960元。
14、650-500=150(万个)150÷500×100%=30%
答:下半年生产的零件比上半年生产的零件增加了30%。
15、50×60%=30(分钟)(301-501)÷501×100%≈66.7%
答:小强的工作效率比小明高66.7%。
参考答案:
一、填空题
1、“求比一个数多(少)百分之几的数是多少”的解题方法一般有两种:一种是先求出比(单位“1”)多(少)的数,再用(单位“1”)的量加(减);另一种是先求出要求的这个数是单位“1”的(百分之几),再用单位“1”的量乘(百分之几)。
2、如果题中没有给出单位“1”的量的具体数字,我们可以假设(单位“1”)的量是某一个(固定数),也可以假设单位“1”的量是1.假设单位“1”的量是(1),计算更简便。
3、在前后增、减幅度相同时,两次增减的具体数量不同,减少的具体数量要(多于)增加的具体数量。
4、比80kg多10%是(88)kg,比60t少20%是(48)t。
5、甲数比乙数少10%,甲数是乙数的(90)%。
6、实际产量比计划产量多5%,实际产量是计划产量的(105)%。
7、某工厂预计今年的产值比去年增加50%,实际产值是预计产值的120%,今年实际产值是去年的(180)%。
8、成活率是90%的树苗,活了270棵,那么一共栽了约(300)棵。
二、选择题
9、一批零件共有24个不合格,这批零件的合格率是88%,这批零件合格的有(C)个。
A、100 B、88 C、176
10、甲数的60%等于乙数的32(甲、乙均不为0),那么(A)。
A、甲数>乙数 B、甲数<乙数 C、甲数=乙数
11、甲数比乙数多25%,乙数比甲数少(B)。
A、10% B、20% C、30%
12、小明卖了一件198元的衣服,赚了10%,这件衣服成本是(A)
A、180 B、190 C、200
三、应用题
13、假设第一周价格为1. 1×(1-5%)=0.95 0.95×(1+4%)=0.988
(1-0.988)÷1×100%=1.2%
答:第三周比第一周降价1.2%。
14、9.8×(1-10%)=8.82(元) 7.8×(1+10%)=8.58(元)
8.82元<8.58元
答:甲商店的苹果现价高。
15、120÷(1+20%)=100(元)120-100=20(元)
120÷(1-20%)=150(元)150-120=30(元)
20元<30元 30-20=10(元)
答:服装店老板亏了,亏了10元。
相关练习:
语文
数学
英语
相关文章推荐
每天坚持陪孩子学习十分钟,影响孩子的一生。
一、填空题(茵苗教育)
1、分数的意义:既可以表示一个(数值),也可以表示两个数之间的(倍比)关系。
2、分数的读法:先读(分母),再读“分之”,最后读(分子),分子和分母按照整数读法来读。
3、百分数是分母为(100)的分数的一种特殊形式。
4、百分数表示(两个量)之间一种(比)的关系,表示一个数是另一个数的(百分之几)。
5、百分数的写法:先写(分子),再写(%)。
6、百分数的读法:先读(%),再读(分子)。
7、由于百分数只能表示两个量之间的(倍比)关系,在生活中也叫(百分率)或(百分比)。
8、27%读作(百分之二十七);0.075%读作(百分之零点零七五)。
9、我国森林面积约占陆地面积的百分之二十一点六三。
百分之二十一点六三 写作(21.63%)。
10、调查,人们在日常生活所产生的垃圾中,可以利用的废弃纸张约占百分之二十八点七,废弃金属约占百分之十六点四。
百分之二十八点七 写作(28.7%);
百分之十六点四 写作(16.4%)。
二,选择题(茵苗教育)
11、下列各分数哪些可以用百分数表示(B)。
B、某校六年级学生人数约占全校总人数的10035 。
12、某服装店上半年完成全年计划55%的销售量,下半年完成了全年计划72%的销售量,这一年超额完成了全年计划(C)的销售量。
C、27%
13、仓库的大米用去55%,还剩(A)。
A、45%
三、应用题
14、(1)我国某地区六月份的降水量是100175mm。
答:这里降水量不能用百分数表示,只能用分数表示。
(2)某校六年级男生人数占六年级全体人数的10047。
答:这里的两个量表示的是两个量整体与部分的关系,可以用百分数表示,为47%。
(3)某件衬衣中,棉纤维含量占总成分的10075。
答:这里的两个量表示的是两个量整体与部分的关系,可以用百分数表示,表示为75%。
15、1-46%=54% 54%-46%=8%
答:还剩下54%,剩下的铁丝比用去的铁丝多全长的8%。
参考答案:
一、填空题
1、小数化成百分数的方法:把(小数点)向右移动(两)位,加上百分号。
2、分数化成百分数的方法:
(1)分母能直接化成100:先把分数改写成(分母是100)的分数,再把分母是(100)的分数化成百分数;
(2)分母不能直接化成100:先把分数化成(小数),再把(小数)化成百分数。
3、百分数化成小数,可以先把百分数写成分母是(100)的分数,再把(分数)化成小数;也可以把(百分号)去掉,同时把(小数点)向(左)移动两位,位数不够时,用(0)补足。
4、百分数化成分数,把百分数写成(分母是100)的分数,能约分的一定要约成最简分数。
5、“求一个数的几分之几”的解题方法:这个数(单位“1”的量)×几分之几。
6、在图书馆阅读的男生有50人,女生有40人,男生人数相当于女生人数的(125)%。
7、一本60页的故事书,3天读了45页,读了(75)%,还剩(25)%没读。
8、六(1)班由50人,今天出勤48人,出勤率是(96%)。
二、选择题
9、1÷7的商化为百分数约是(C)。
C、14.3%
10、把75%化成分数是(B)。
B、43
11、下面的式子正确的是(A)。
A、45%>0.34
12、六年(1)班今天的出勤率是80%,六年(2)今天出勤的人数占六年(2)班总人数的5045,哪个班级的出勤率高?(B)
B、六年(2)班
三、应用题
13、55-5=50(万)5÷50×100%=10%
答:比计划增加了10%。
14、15.2÷100×100%=15.2% 405÷1000×100%=40.5%
15.2%<40.5%
答:花生含油量高。
15、设圆的半径是r。圆的面积是Πr2,正方形的面积是4r2.
Πr2÷4r2×100%=3.14r2÷4r2×100%=78.5%
答:圆的面积占正方形面积的78.5%。
参考答案:
一、填空题
1、“求一个数比另一个数多(少)百分之几”的问题与“求一个数比另一个数多(少)几分之几”的问题的解题方法(相同),只是把(分数)换成(百分数)。
2、求比一个数多(少)百分之几,先求一个数比(另一个数)多(或少)的具体量,再除以(标准量)。
3、求比一个数多(少)百分之几,可以把另一个量看作(单位“1”),即100%,先求一个数是另一个数的(百分之几),再根据所求问题把两者相减。
4、通常在“占”“是”“比”“相当于”的后面的那个量就是(单位“1”)的量。
5、甲、乙两数的比是3:4,甲数比乙数少(25)%。
6、有两杯饮料,甲比乙多41,乙比甲少(25)%,甲是乙的(125)%。
7、某果园去年苹果产量是500kg,今年增加到650kg,今年增加了(30)%。
8、某果园去年苹果产量是500kg,今年增加了650kg,今年增加了(130)%。
二、选择题
9、一件商品,原价80元,现降价20元,降了(C)。
C、25%
10、25m增加20%后,又减少20%,结果是(B)m。
B、24
11、一个项目,小明计划5天完成,实际4天完成,工作效率提高了(A)。
A、25%
12、一条裙子降价30元,现价90元,降价幅度是(B)
B、25%
三、应用题
13、5800×(1+20%)=6960(元)
答:妈妈买这把琴花了6960元。
14、650-500=150(万个)150÷500×100%=30%
答:下半年生产的零件比上半年生产的零件增加了30%。
15、50×60%=30(分钟)(301-501)÷501×100%≈66.7%
答:小强的工作效率比小明高66.7%。
参考答案:
一、填空题
1、“求比一个数多(少)百分之几的数是多少”的解题方法一般有两种:一种是先求出比(单位“1”)多(少)的数,再用(单位“1”)的量加(减);另一种是先求出要求的这个数是单位“1”的(百分之几),再用单位“1”的量乘(百分之几)。
2、如果题中没有给出单位“1”的量的具体数字,我们可以假设(单位“1”)的量是某一个(固定数),也可以假设单位“1”的量是1.假设单位“1”的量是(1),计算更简便。
3、在前后增、减幅度相同时,两次增减的具体数量不同,减少的具体数量要(多于)增加的具体数量。
4、比80kg多10%是(88)kg,比60t少20%是(48)t。
5、甲数比乙数少10%,甲数是乙数的(90)%。
6、实际产量比计划产量多5%,实际产量是计划产量的(105)%。
7、某工厂预计今年的产值比去年增加50%,实际产值是预计产值的120%,今年实际产值是去年的(180)%。
8、成活率是90%的树苗,活了270棵,那么一共栽了约(300)棵。
二、选择题
9、一批零件共有24个不合格,这批零件的合格率是88%,这批零件合格的有(C)个。
A、100 B、88 C、176
10、甲数的60%等于乙数的32(甲、乙均不为0),那么(A)。
A、甲数>乙数 B、甲数<乙数 C、甲数=乙数
11、甲数比乙数多25%,乙数比甲数少(B)。
A、10% B、20% C、30%
12、小明卖了一件198元的衣服,赚了10%,这件衣服成本是(A)
A、180 B、190 C、200
三、应用题
13、假设第一周价格为1. 1×(1-5%)=0.95 0.95×(1+4%)=0.988
(1-0.988)÷1×100%=1.2%
答:第三周比第一周降价1.2%。
14、9.8×(1-10%)=8.82(元) 7.8×(1+10%)=8.58(元)
8.82元<8.58元
答:甲商店的苹果现价高。
15、120÷(1+20%)=100(元)120-100=20(元)
120÷(1-20%)=150(元)150-120=30(元)
20元<30元 30-20=10(元)
答:服装店老板亏了,亏了10元。
相关练习:
语文
数学
英语
相关文章推荐
每天坚持陪孩子学习十分钟,影响孩子的一生。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询