面面垂直的证明方法
展开全部
一个平面过另一平面的垂线,则这两个平面相互垂直。如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。如果两个平面的垂线互相垂直,那么这两个平面互相垂直(可理解为法向量垂直的平面互相垂直)。
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个两两垂直的平面的交线两两垂直。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。(判定定理推论2的逆定理)
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个两两垂直的平面的交线两两垂直。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。(判定定理推论2的逆定理)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询