不可导点怎么判断

 我来答
帐号已注销
2021-12-06 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

不可导点判断:初等函数在其定义域内均可导,一般可根据导数定义去判断,即在某点处左导数等于右导数。

函数的条件是在定义域内必须是连续的,可导函数都是连续的,但是连续函数不一定是可导函数。例如:y=|x|,在x=0上不可导,即使这个函数是连续的,但是lim,y'=1,limy'=-1两个值不相等,所以不是可导函数。

共有四种情况:

1、无定义的点,没有导数存在,例如分母为0的点[无定义]。

2、不连续的点,或称为离散点,导数不存在[不连续]。

3、连续点,但是此点为尖点,左右两边的斜率不一样,也就是导数不一样,不可导[不光滑]。

4、有定义,连续、光滑,但是斜率是无穷大[导数值为∞]。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式