求不定积分∫√x/(x^4/3+1)dx
1个回答
展开全部
∫√xdx/(x^(3/4)+1)
=(2/3)∫dx^(3/2)/(1+x^(3/4))
=(4/3)∫x^(3/4)dx^(3/4) /(1+x^(3/4))
=(4/3)x^(3/4)-(4/3)ln|1+x^(3/4)|+C
∫√xdx/(x^(4/3)+1)
=(2/3)∫dx^(3/2)/(1+x^(4/3))
=(2/3)∫9x^(8/6)d(x^(1/6)/(1+x^(4/3))
=6∫x^(4/3)dx^(1/6)/(1+x^(4/3))
=6x^(1/6)-6∫dx^(1/6)/(1+x^(8/6))
无法用初等函数表示
x^(1/6)=t ∫dx^(1/6)/(1+x^(8/6))=∫dt/(1+t^8)无法用初等函数表示
=(2/3)∫dx^(3/2)/(1+x^(3/4))
=(4/3)∫x^(3/4)dx^(3/4) /(1+x^(3/4))
=(4/3)x^(3/4)-(4/3)ln|1+x^(3/4)|+C
∫√xdx/(x^(4/3)+1)
=(2/3)∫dx^(3/2)/(1+x^(4/3))
=(2/3)∫9x^(8/6)d(x^(1/6)/(1+x^(4/3))
=6∫x^(4/3)dx^(1/6)/(1+x^(4/3))
=6x^(1/6)-6∫dx^(1/6)/(1+x^(8/6))
无法用初等函数表示
x^(1/6)=t ∫dx^(1/6)/(1+x^(8/6))=∫dt/(1+t^8)无法用初等函数表示
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询