不明白sin^4θ-sin^6θ怎么计算得下面的结果 麻烦来个详细过程谢谢
2个回答
展开全部
I(2n)
=∫(0->π/2) (sinx)^(2n) dx
=-∫(0->π/2) (sinx)^(2n-1) dcosx
=-[cosx.(sinx)^(2n-1)]|(0->π/2) +(2n-1)∫(0->π/2) (sinx)^(2n-2) (cosx)^2 dx
=0 +(2n-1)∫(0->π/2) (sinx)^(2n-2) [1-(sinx)^2] dx
2nI(2n) =(2n-1)I(2n-2)
I(2n) =[(2n-1)/(2n)]I(2n-2)
=>
∫(0->π/2) (sinx)^6 dx
=I6
=(5/6)I4
=(5/6)(3/4)I2
=(5/6)(3/4)(1/2)I0
=(5/6)(3/4)(1/2)(π/2)
∫(0->π/2) (sinx)^4 dx
=(3/4)I2
=(3/4)(1/2)I0
=(3/4)(1/2)(π/2)
=∫(0->π/2) (sinx)^(2n) dx
=-∫(0->π/2) (sinx)^(2n-1) dcosx
=-[cosx.(sinx)^(2n-1)]|(0->π/2) +(2n-1)∫(0->π/2) (sinx)^(2n-2) (cosx)^2 dx
=0 +(2n-1)∫(0->π/2) (sinx)^(2n-2) [1-(sinx)^2] dx
2nI(2n) =(2n-1)I(2n-2)
I(2n) =[(2n-1)/(2n)]I(2n-2)
=>
∫(0->π/2) (sinx)^6 dx
=I6
=(5/6)I4
=(5/6)(3/4)I2
=(5/6)(3/4)(1/2)I0
=(5/6)(3/4)(1/2)(π/2)
∫(0->π/2) (sinx)^4 dx
=(3/4)I2
=(3/4)(1/2)I0
=(3/4)(1/2)(π/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询