分析如下:
解:(a-b)^2=(a-b)*(a-b)
=a*(a-b)-b*(a-b)
=a*a-a*b-b*a+b*b
=a^2-ab-ab+b^2
=a^2-2ab+b^2。
即(a-b)^2等于a^2-2ab+b^2。
结构特征:
1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍。
2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内)。
3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式。