设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零.
展开全部
设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,
而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的
所有特征值也不为0.A的特征值就是σ的特征值,所以σ的特征值一定不为零.
而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的
所有特征值也不为0.A的特征值就是σ的特征值,所以σ的特征值一定不为零.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
希卓
2024-10-17 广告
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支...
点击进入详情页
本回答由希卓提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询