直角三角形ABC中,AC=BC=AD,角DAC=30度,证明BD=CD

 我来答
faker1718
2022-08-10 · TA获得超过986个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.2万
展开全部
证明:
首先延长AD交BC于E,设AC=BC=AD=1
分析:如果BD=CD,那么角DCB=角DBC,由已知条件可知推断角DCB=15度,所以角DBC=15度.
因为由已知条件可推断出角BAD=15度,
所以角BAD=角ABC,
因为角AEB是三角形AEB和三角形DEB的共同角,
所以三角形AEB和三角形DEB为相似三角形,
所以BE:AE=DE:BE,
所以BE平方=AE*DE是BD=CD的必然条件.
另一方面因为AC=BC=AD=1
所以AE=1+DE
BE=1-CE
因为三角形ACE为直角三角形,且角DAC=30度
所以CE=AE/2=(1+DE)/2
所以BE=1-(1+DE)/2=(1-DE)/2
BE的平方=(1-DE)平方 /4.
AE*DE=(1+DE)*DE = DE+DE平方,
所以BE平方不等于AE*DE
从此可知,BD必然不等于CD.
出此题者真是250,无聊得很.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式