设函数f(x)为定义[-a,a]上的奇函数,证明:∫(-a->0)f(x)dx=-∫(0->a)f(x)dx 我来答 1个回答 #热议# 应届生在签三方时要注意什么? 新科技17 2022-09-08 · TA获得超过5901个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:74.7万 我也去答题访问个人页 关注 展开全部 f(x)为定义[-a,a]上的奇函数那么在定义域内,f(x)= -f(-x)所以∫(-a->0)f(x)dx=∫(-a->0) -f(-x) dx=∫(a->0) f(-x) d(-x)= -∫(0->a) f(-x) d(-x) 这是把-x代换成x,(更换字母对定积分的值没有影响)= -∫(0->a) f(x... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: