为什么二阶导数不存在的点也可能是函数拐点?

 我来答
惠企百科
2022-12-21 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

因为二阶导数不存在的点,左右两边的二阶导数的符号可能是不同的。

在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。

设函数f(x)在点

 

的某邻域内具有二阶连续导数,若

 

的两侧

 

异号,则(

 

,f(

 

))是曲线y=f(x)的一个拐点;若

 

的两侧

 

同号,则(

 

,f(

 

))不是曲线的拐点。

扩展资料:

可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

⑶对于⑵中求出的每一个实根或二阶导数不存在的点

 

,检查f''(x)在

 

左右两侧邻近的符号,那么当两侧的符号相反时,点(

 

,f(

 

))是拐点,当两侧的符号相同时,点(

 

,f(

 

))不是拐点。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式