地已知a,b均为正数,且a+b=2,求u=√(a^2+4)+√(b^2+1)的最小值

 我来答
舒适还明净的海鸥i
2022-07-23 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70万
展开全部
构造向量m=(a,2),n=(b,1),则
m+n=(a+b,3)=(2,3).
故依向量模不等式|m|+|n|≥|m+n|,得
√(a^2+4)+√(b^2+1)≥√(2^2+3^2)=√13.
故所求最小值为:u|min=√13.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式