特征值和特征向量有何关系?

 我来答
匿名用户
2023-05-18
展开全部

特征向量是非零向量,它被矩阵对应的线性变换所拉伸的倍数就是特征值。因此,特征向量和特征值是密切相关的,特征值告诉我们特征向量在矩阵对应线性变换中的行为表现。在矩阵中找到特征向量,必须先知道特征值,并且每个特征值都对应或多个特征向量。因此,特征值和特征向量是线性代数中的基本概念,在很多领域都有广泛的应用。
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
匿名用户
2023-05-18
展开全部

特征向量是非零向量,它在线性变换下只被缩放而不改变方向。而特征值是这个线性变换作用在特征向量上的标量系数。因此,特征向量和特征值是密切相关的,在线性代数中,我们通常用特征值和特征向量来描述矩阵的性质和操作。换句话说,特征向量和特征值一起描述了矩阵的本质特征和行为。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
卿雨筠S6
2022-10-17 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:31%
帮助的人:834万
展开全部
特征值与特征向量之间关系:
1、属于不同特征值的特征向量一定线性无关。
2、相似矩阵有相同的特征多项式,因而有相同的特征值。
3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。
4、n阶矩阵与对角矩阵相似的充分必要条件是:矩阵有n个线性无关的分别属于特征值1,2,3...的特征向量(1,2,3...中可以有相同的值)。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设
A
是n阶方阵,如果存在数m和非零n维列向量 x,使得
Ax=mx
成立。
扩展资料:
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:搜狗百科——特征值
参考资料来源:搜狗百科——特征向量
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式