洛必达法则的“无穷大/无穷大”型 如何证明

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

可以转化为无穷小/无穷小型,例如n/(n+1)=[1/(n+1)]/(l/n)

洛必达法则是当n值或x值趋近某值或趋近无穷大时,分子分母都趋近于无穷大,是∞/∞型;分子分母都趋近于零时,是0/0型。

只是分子分母趋近于0或∞快慢程度不一定相同罢了,这就有了等价无穷小/大,高阶无穷小/大,低阶无穷小/大的问题。从广义上来讲只要分母趋近于∞,就可以用洛比达法则

扩展资料:

设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。

自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。

参考资料来源:百度百科-无穷大

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式