设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1
1个回答
展开全部
1.A不可逆
|A|=0
AA*=|A|E=O
假设|A*|≠0
则
A=O
显然A*=O,
与假设矛盾,所以
|A*|=0
即|A*|=|A|n-1=0
2.A可逆
|A|≠0
AA*=|A|E
A*也可逆
又
|AA*|=||A|E|=|A|^n
|A||A*|=|A|^n
所以
|A*|=|A|n-1
|A|=0
AA*=|A|E=O
假设|A*|≠0
则
A=O
显然A*=O,
与假设矛盾,所以
|A*|=0
即|A*|=|A|n-1=0
2.A可逆
|A|≠0
AA*=|A|E
A*也可逆
又
|AA*|=||A|E|=|A|^n
|A||A*|=|A|^n
所以
|A*|=|A|n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询