显然,x=1,0,-1,函数均无意义,均是间断点。
①lim[x-->1]f(x)=lim[x-->1](x-1)/(x^2-1)√(x^2+1)
=lim[x-->1]1/(x+1)√(x^2+1)=√2/2
所以x=1是可去间断点,补充f(1)=√2/2,函数即在x=1处连续。
②lim[x-->0+]f(x)=lim[x-->0+](x-1)/(x^2-1)√(x^2+1)
=lim[x-->0+]1/(x+1)√(x^2+1)=1
lim[x-->0-]f(x)=lim[x-->0-](x-1)/(x^2-1)√(x^2+1)
=lim[x-->0-]-1/(x+1)√(x^2+1)=-1
所以x=0是第一类间断点中的跳跃间断点,跃度为2
③lim[x-->-1]f(x)=lim[x-->-1]-(x-1)/(x^2-1)√(x^2+1)
=lim[x-->-1]-1/(x+1)√(x^2+1)=+∞
所以x=-1是第二类间断点中的无穷间断点。
f(x) = [(x^2-x)/(x^2-1)] .√(1+ 1/x^2)
间断点 x=-1,0, 1
lim(x->1) [(x^2-x)/(x^2-1)] .√(1+ 1/x^2)
=lim(x->1) { x(x-1)/[(x-1)(x+1)] }.√(1+ 1/x^2)
=lim(x->1) [ x/(x+1)] .√(1+ 1/x^2)
=[1/(1+1)].√(1+1)
=√2/2
x=1, 可去间断点
lim(x->0+) [(x^2-x)/(x^2-1)] .√(1+ 1/x^2)
=lim(x->0+) [x(x-1)/(x^2-1)] .√(x^2+1)/x
=lim(x->0+) [(x-1)/(x^2-1)] .√(x^2+1)
=[(0-1)/(0-1)](1)
=1
lim(x->0-) [(x^2-x)/(x^2-1)] .√(1+ 1/x^2)
=lim(x->0+) [x(x-1)/(x^2-1)] .√(x^2+1)/(-x)
=lim(x->0+) -[(x-1)/(x^2-1)] .√(x^2+1)
=-1
x=0, 跳跃间断点
lim(x->-1-) [(x^2-x)/(x^2-1)] .√(1+ 1/x^2) ->-∞
x=-1, 无穷间断点