spss逐步回归分析结果解读
展开全部
1、打开spss以后,打开数据,这些都准备好了以型渣后,我们开始拟合方程,在菜单栏上执行:analyze---regression---linear,打开回归拟合对话框。
2、我们将因变量放大dependent栏,将自变量都放到independent栏
2、我们将因变量放大dependent栏,将自变量都放到independent栏
扩展资料
3、将method设置为stepwise,这就是逐步回归法
SPSS进行逐步回归分析:
在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。
逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的'多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。
回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小卜岁悄,预测值
的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数雀空目尤为重要。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |