7.求微分方程(x2-y)dx-(x-y)dy=0的通解.(数1
2个回答
展开全部
(x^2-y)dx - (x-y)dy = 0
∂(x^2-y)/∂y = -1 = ∂[-(x-y)]/∂x, 是全微分方程。通解是
u(x,y) = ∫<0, x>(x^2-y)dx + ∫<0, y>[-(0-y)]dy
= x^3/3 - xy + y^2/2 = C
∂(x^2-y)/∂y = -1 = ∂[-(x-y)]/∂x, 是全微分方程。通解是
u(x,y) = ∫<0, x>(x^2-y)dx + ∫<0, y>[-(0-y)]dy
= x^3/3 - xy + y^2/2 = C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询