向量组等价一般指什么?

 我来答
书尽胸臆
高粉答主

2022-09-05 · 精读书,爱读书,分享书,书中自有颜如玉,书中自有黄金屋
书尽胸臆
采纳数:730 获赞数:58961

向TA提问 私信TA
展开全部

向量组等价一般指等价向量组。

向量组等价的基本判定是:两个向量组可以互相线性表示。

需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。

向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是

R(A)=R(B)=R(A,B),

其中A和B是向量组A和B所构成的矩阵。

向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是

R(A)=R(B)=R(A,B),

其中A和B是向量组A和B所构成的矩阵。

(注意区分粗体字与普通字母所表示的不同意义)

或者说:两个向量组可以互相线性表示,则称这两个向量组等价。

注:

1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

2、任一向量组和它的极大无关组等价。

3、向量组的任意两个极大无关组等价。

4、两个等价的线性无关的向量组所含向量的个数相同。

5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

扩展资料

设有两个向量组

(Ⅰ):α1,α2,……,αm;

(Ⅱ):β1,β2,……,βm;

如果(Ⅰ)中每个向量都可以由向量组(Ⅱ)线性表示,则称(Ⅰ)可由(Ⅱ)线性表示;如果(Ⅰ)与(Ⅱ)可以相互线性表示,则称(Ⅰ)与(Ⅱ)等价,记为(Ⅰ)≌(Ⅱ)。

例如:,若β1=α1+α2,β2=α1-2α2,β3=α1,则向量组(Ⅰ)={α1,α2}与向量组(Ⅱ)={β1,β2,β3}等价。事实上,给定的条件已表明(Ⅱ)可由(Ⅰ)线性表示,又容易得到α1=(2/3)β1+(1/3)β2+0β3,α2=(1/3)β1-(1/3)β2+0β3,这表明(Ⅰ)也可以由(Ⅱ)线性表示,由定义即知(Ⅰ)与(Ⅱ)等价。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式