线性方程组的基本解法
展开全部
齐次线性方程解的个数=n-r(未知数的个数-秩的个数)
非齐次线性方程解的个数=n-r+1(未知数的个数-其次方程的秩+1,其中1代表非齐次线性方程的一个特解,根据非齐次线性方程解的结构得出。
系数矩阵常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。
解
非齐次线性方程组Ax=b的求解:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询