为什么导数趋近无穷时不可导
1个回答
展开全部
如果左右导数不等或者不存在,那么导数不存在。
可导的必要条件是导数在此点连续,导数的定义通常是证明导数在某点可导的常用方法,复习的时候要多用定义光把情况记住是不能解决实际的问题.。
在微积分学中,一个实变量函数是可导函数,若其在定义域中每一点导数存在。直观上说函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。
扩展资料:
注意事项:
函数可导则函数连续,函数连续不一定可导,不连续的函数一定不可导。
如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。
导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导。
参考资料来源:百度百科-导数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |