为什么x趋于x0时f( x)有无穷间断点?
2个回答
展开全部
当x趋向于x0时,f(x)趋向于无穷大,故x=x0为无穷间断点,而且只要左右极限中,任意一个极限等于无穷大,那么这个点就是无穷间断点。
间断点分为可去间断点、跳跃间断点、无穷间断点、震荡间断点,其中可去间断点和跳跃间断点属于第一类间断点。第二类间断点:函数的左右极限至少有一个不存在。
定义
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
以上内容参考:百度百科-间断点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询