如何判断两个二次函数是关于y轴对称的?
二次函数的公式
y=ax²+bx+c(a≠0,a、b、c为常数),顶点坐标为 【-b/2a,(4ac-b²)/4a】。
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。
y=a(x-x₁)(x-x₂)(a≠0) 【仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b²-4ac≥0】。
y=ax²+bx+c与y=ax²-bx+c两图像关于y轴对称。
y=ax²+bx+c与y=-ax²-bx-c两图像关于x轴对称。
y=ax²+bx+c与y=-ax²+bx+c-2b²*|a|/4a²关于顶点对称。
y=ax²+bx+c与y=-ax²+bx-c关于原点对称。
y=a(x-h)²+k与y=a(x+h)²+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
y=a(x-h)²+k与y=-a(x-h)²-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于X轴对称,横坐标相同、纵坐标相反。
y=a(x-)²+k与y=-a(x-h)²+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
y=a(x-h)²+k与y=-a(x+h)²-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。
二次函数
在数学中,二次函数最高次必须为二次, 二次函数(quadratic function)表示形式为y=ax²+bx+c(a≠0)的多项式函数。
二次函数的图像是一条对称轴平行于y轴的抛物线。
二次函数表达式y=ax²+bx+c的定义是一个二次多项式,因为x的最高次数是2。
如果令二次函数的值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。