高一数学恒成立问题方法题型
展开全部
恒成立问题的方法是将所求的关于x的代数式看作二次函数,根据二次函数图像与x轴的关系,与“二次函数图像只能开口向下”相对应。
恒成立是数学概念,是指当x在某一区间或者集合U内任意取值时,关于x的代数式f(x)总是满足大于等于或者小于0,我们把这种“总是满足”叫做恒成立。
恒成立问题解决的基本方法
恒成立问题的方法:函数性质法,对于一次函数,只须两端满足条件即可;对于二次函数,就要考虑参数和△的取值范围。分离变量法,将参数移到不等式的一侧,将自变量x都移到不等式的另一侧。
二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |