一道高中数学不等式证明题.设a,b,c>0,求证1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c)?
1个回答
展开全部
由不等式公式知:(a+b+c)(1/a+1/b+1/c)>=9
又 2(a+b+c)(1/(a+b)+1/(b+c)+1/(c+a))
=[(a+b)+(b+c)+(c+a)][(a+b)+1/(b+c)+1/(c+a)]
>=9
a,b,c>0
1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c),2,证明:由柯西不等式可知[(a+b)+(b+c)+(c+a)]×[1/(a+b)+1/瞎侍(b+c)+1/(c+a)]≥罩罩(1+1+1)²=9.即磨闷吵2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]≥9.====>1/(a+b)+1/(b+c)+1/(c+a)≥9/[2(a+b+c)],1,
又 2(a+b+c)(1/(a+b)+1/(b+c)+1/(c+a))
=[(a+b)+(b+c)+(c+a)][(a+b)+1/(b+c)+1/(c+a)]
>=9
a,b,c>0
1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c),2,证明:由柯西不等式可知[(a+b)+(b+c)+(c+a)]×[1/(a+b)+1/瞎侍(b+c)+1/(c+a)]≥罩罩(1+1+1)²=9.即磨闷吵2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]≥9.====>1/(a+b)+1/(b+c)+1/(c+a)≥9/[2(a+b+c)],1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询