m^2-4<m怎么解
2个回答
展开全部
方程m^2+m-4=1的计算。
本题为一元二次方程的计算,详细过程如下:
m^2+m-4=1,
m^2+m-4-1=0,
m^2+m-5=0,
m=(-1±√21)/2,
所以:m1=(-1+√21)/2,m2=(-1-√21)/2。
二次方程的求根公式:
对于一元二次ax^2 +bx+c=0,其中a为二次项系数,b为一次项系数,c是常数。且判别式△=b^2-4ac≥0,则方程的根为x1,2=[-b±√(b^2-4ac)]/2a。它是由方程系数直接把根表示出来的公式,称之为二次方程的求根公式。
知识拓展:
一元一次方程指只含有一个未知数、未知数的最高次数为2且两边都为整式的等式。一元二次方程的一般形式为ax²+bx+c=0(a≠0),其中ax²是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询