行列式等于零,向量组就线性相关,为什么?是哪个定理吗?
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
原因:线性相关就是各行或列能互相线性表示,能进行初等变换,把某一行或列变换到另一行或列,最后有一行会全为0,计算时行列式就等于0。所以行列式等于0就是线性相关。
相反的,线性无关它的行列式不等于0,说明是满秩,没有一行或一列全为0。
没有具体的定理。
在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关;若a≠0,则说A线性无关。包含零向量的任何向量组是线性相关的。
扩展资料:
向量a1,a2,···,an(n_2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。一个向量线性相关的充分条件是它是一个零向量。两个向量a、b共线的充要条件是a、b线性相关。三个向量a、b、c共面的充要条件是a、b、c线性相关。
行列式A中某行(或列)用同一数k乘,其结果等于kA。
行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,?,bn;另一个是с1,с2,?,сn;其余各行(或列)上的元与|αij|的完全一样。
参考资料来源:
参考资料来源: