线性代数里求秩能否同时进行行变换和列变换。同时,可以否?
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
可以。
等价矩阵:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。(充分必要条件)
若r(A)=r(B),A,B同型矩阵,则A与B等价。(充分必要条件)
在线性代数和矩阵论中,两个矩阵之间的等价是一种矩阵之间的等价关系。
所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。
可逆矩阵:若A可逆,则A=P1P2...Ps,Pi是初等矩阵。(充分必要条件)
线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
扩展资料
在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=Q-1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
性质
1.矩阵A和A等价(反身性);
2.矩阵A和B等价,那么B和A也等价(等价性);
3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
5.具有行等价关系的矩阵所对应的线性方程组有相同的解
6.对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。