高数。定积分中值定理。到底是开区间还是闭区间啊??

 我来答
惠企百科
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

开闭区间都可以,一般写成开区间。闭区间用介值定理证;开区间设积分上限函数用拉格朗日中值定理证明。

中值定理是微积分学中的基本定理,由四部分组成。

内容是说一段连续光滑曲线中必然有一点,它的斜率与整段曲线平均斜率相同(严格的数学表达参见下文)。中值定理又称为微分学基本定理,拉格朗日定理,拉格朗日中值定理,以及有限改变量定理等。

如果函数  满足在闭区间[a,b]上连续;在开区间(a,b)内可导,那么在(a,b)内至少有一点  ,使等式  成立。

如果函数  满足在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即  ,那么在(a,b)内至少有一点  ,使得  。

补充:几何上,罗尔定理的条件表示,曲线弧(方程为)是一条连续的曲线弧,除端点外处处有不垂直于轴的切线,且两端点的纵坐标相等。而定理结论表明,弧上至少有一点,曲线在该点切线是水平的。

扩展资料:

在一些等式的证明中,我们往往容易思维定式,只是对于原来的式子要从哪去证明,很不容易去联系其它,只从式子本身所表达的意思去证明。

已知有这样一个推论,若函数  在区间I上可导,且连续,则  为I上的一个常量函数。它的几何意义为:斜率处处为0的曲线一定是平行于x轴的直线。这个推论的证明应用拉格朗日中值定理。

无穷小(大)量阶的比较时,看到两个无穷小(大)量之比的极限可能存在,也可能不存在。如果存在,其极限值也不尽相同。称两个无穷小量或两个无穷大量之比的极限为型或型不定式极限。解决这种极限的问题通常要用到洛比达法则。

这是法则的内容,而在计算时往往都是直接的应用结论,没有注意到定理本身的证明,而这个定理的证明也应用到了中值定理。

参考资料:百度百科---中值定理

富港检测技术(东莞)有限公司_
2024-04-02 广告
怎么能说在闭区间可导呀? 端点处 要么左极限不存在 要么右极限不存在 是不可导的 但为什么连续是闭区间呢 因为 连续 在左端点连续的意思是右连续 反之左连续 在区间每一点都连续的函数 叫做在该区间上的连续函数。如果区间包括端点,那么... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式