定积分求极坐标图形面积时怎么确定θ的范围
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
(x-a)²+y²=a²x²+y²=2ax
对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。
扩展资料:
极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°)和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240°−180°=60°)。
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r,θ)可以任意表示为(r,θ±2kπ)或(−r,θ±(2k+1)π),这里k是任意整数。如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
用极坐标系描述的曲线方程称作极坐标方程,通常用来表示ρ为自变量θ的函数。
极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)=ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)=ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)=ρ(θ),则曲线相当于从极点逆时针方向旋转α°。
参考资料来源: