已知a^2+b^2=1,c^2+d^2=1,ac+bd=0,试证ab+cd的值?

 我来答
科创17
2022-11-22 · TA获得超过5904个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
由于a^2+b^2=1
那么a^2=1-b^2
ac+bd=0
ac=-bd
那么(ac)^2=(-bd)^2
a^2c^2=b^2d^2
带入a^2=1-b^2
那么有(1-b^2)c^2=b^2d^2
c^2-b^2c^2-b^2d^2=0
c^2-b^2(c^2+d^2)=0
由c^2+d^2=1
得:c^2-b^2=0
c^2=b^2.①
再由(ac+bd)^2=0
分解得:a^2c^2+b^2d^2+2abcd=0
而(ab+cd)^2=a^2b^2+c^2d^2+2abcd
再把①带入.得:(ab+cd)^2=a^2b^2+c^2d^2+2abcd=a^2c^2+b^2d^2+2abcd=0
所以ab+cd=0,7,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式