什么是三角函数的初相?
在三角函数图像y=Asin(ωx+φ)中ωx+φ称为相位(phase),x=0时的相位(ωx+φ=φ)称为初相。
注意:初相的前提是(A>0,ω>0),如果其中有一个不是,可以通过诱导公式进行变形,使之满足上述条件即可。
物理中,描述简谐运动的物理量,如振幅、周期、和频率等都是与这个解析式中的常数有关。
A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=2π/ω,这是做间歇运动的物体往复运动一次所需要的时间。
这个简谐运动的频率由公式f=1/T=|ω|/2π(这里的频率不是指角速率)它是做简谐运动的物体在单位时间内往复运动的次数。
扩展资料:
初相的运算:
1、三角函数图像向左或向右移动的距离=φ/|ω|(注意移动距离向左符号为正,向右符号为负。谨记左加右减原则)不过这个应用并不广泛。
2、带入运算法:取函数图像上的某点代入函数表达式即可算出初相φ。
初相为零时,余弦表达的质点处于"正方向端点",正弦表达的质点处于"平衡位 置,正方向运动",表明H的起始位置是"正方向端点",H'的起始位置是"平衡位置,正方向运 动",显然H与H'差值的根本原因是由于两种表达式的质点起始位置不同而造成的。
参考资料来源:百度百科——初相