北师大版七年级上册数学知识点总结
1个回答
展开全部
第一章丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)用平面截圆柱体,可能出现以下的几种情况.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)
(4)用平面去截球体,只能出现一种形状的截面——圆.
(5)需要记住的要点:
几何体 截面形状
正方体 三角形、正方形、长方形、梯形、五边形、六边形
圆 柱 圆、长方形、(正方形)、……
圆 锥 圆、三角形、……
球 圆
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算
1、有理数的概念及分类
① ②
整数和分数统称为有理数。
注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.
2、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零。
注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.
②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。
4、绝对值:
(1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
也可表示为:
;
绝对值的问题经常分类讨论;
(2)绝对值的有关性质
①对任意有理数a,都有|a|≥0;
②若|a|=0,则a=0;
③若|a|=|b|,则a=b或a=-b;
④若|a|=b(b>0),则a=±b;
⑤若|a|+|b|=0,则a=0且b=0;
⑥对任意有理数a,都有|a|=|-a|.
5、有理数大小的比较法则:
在数轴上表示的两个数,右边的数总比左边的数大(大数-小数﹥0,即右边的数-左边的数﹥0);
正数都大于 0,负数都小于0,正数大于一切负数;
两个负数,绝对值大的反而小 .
6、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。
倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为 .
7、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数同0相加,仍得这个数。
一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。
8、有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②可以利用加法则,加法交换律、结合律简化计算。
9、有理数乘法法则:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)
乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
10、有理数除法法则:
①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②除以一个数等于乘以这个数的倒数。
0除以任何非0的数都得0。0不可作为除数,否则无意义。
11、乘方的概念
(1)求几个相同因数的积的运算,叫做乘方,即
在 中,a叫做底数,n叫做指数, 叫做幂.
(2)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;
(3)据规律 底数的小数点移动一位,平方数的小数点移动二位.
注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
(4)乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④(除0以外任何数的0次方都得1) 1的任何次幂都得1,0的任何次幂(除0次)都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
12、有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章整式的加减
1、代数式
字母可以表示任何数。
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
规定:单独的一个数字或字母也是代数式。
注意: ①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 应写作 ;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作 ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 平方米
2、单项式
由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。
(1)单项式中的数字因数叫做单项式的系数.
(2)如果只是一个数字,系数是本身
(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
(4)单独一个非零数的次数是零。
3、多项式
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。
多项式中,次数的项的次数,就是这个多项式的次数. 一般说几次几项式。
4、整式
单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。
5、同类项
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系数无关;与字母顺序无关.
3、合并同类项
把几个同类项合并成一项,叫做合并同类项。
合并同类项法则:
(1)找同类项
(2)合并①各同类项的系数相加作为新的系数,②字母以及字母的指数不变
(3)不同种的同类项间,用“+”号连接
(4)没有同类项的项,连同前面的符号一起照抄
4、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
5、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
6、代数式求值------------用数值代替字母,按照代数式指明的运算进行计算
化简,求值------------①先化为最简的代数式;②再用数值代替字母,按照代数式指明的运算进行计算
第四章基本平面图形
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线(两点确定一条直线)。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(补充类比:①点到直线的距离:点到直线垂线段的长;②平行线间的距离:平行线间垂线段的长)
(3)线段的中点到两端点的距离相等。(点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。)
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
10、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
11、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
直角三角板(45,45,90),(30,60,90)可画出的角除以上角,还有15,75,105,120,135,150这些角都是15的倍数。
12、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50.
时针与分针夹角=分×5.50-时×300 (分针靠近12点)
时针与分针夹角=时×300-分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。
13、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
14、多边形
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n
过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n / 2条对角线.
15、圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
第五章一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。
6、列一元一次方程解应用题步骤:
找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答
7、找等量的方法:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。
(3)常用公式也可作为等量关系
8、列方程解应用题的常用公式:
(1)行程问题: 距离=速度×时间 ;
(2)工程问题: 工作量=工效×工时 ;
(3)比率问题: 部分=全体×比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价×折× ,售价=进价×(1+提高率), 利润=售价-成本,利润=利润率×成本;
(6)本息和=本金+利息, 利息=本金×利率×期数
(7)原量×(1+增长率)=现量; 原量×(1-下降率)=现量 (只有1次增减)
(8)周长、面积、体积问题:
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.
第六章数据的收集与整理
1、普查和抽样调查
(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据等过程。
我们经常通过调查、试验等方式获得数据信息。项目很大时,还可以通过查阅报纸、相关文献或上网的方式。
(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。
所要考察的对象的全体称为总体。
组成总体的每一个考察对象称为个体。
(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普查。
人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调查。
抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。
样本容量:样本含有个体的数目。
(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个体被选中的可能性都相等。随机调查不是调查方法。
(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的代表性和广泛性(随机性,真实性)。
2、扇形统计图及其画法:
(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(2)画法:
①计算不同部分占总体的百分比:各项数量 / 总数 ×100%。(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比圆心角度数 / 3600 ×100%)。
②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆心角度数=3600×百分比
③在圆中画出各个扇形,并标上百分比。
3、频数分布直方图
(1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上,纵轴表示各组的频数。
如果样本中数据较多,数据的差也比较大时,频数分布直方图能更清晰、更直观地反映数据的整体状况。
(2)频数分布直方图的制作步骤:
①找出所有数据中的值和最小值,并算出它们的差(极差)。
②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当数据在50~100之间时,分组的数量在5-12之间较为适宜; 组距:把所有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问题〉。)
③确定分点
④列出频数分布表.
⑤画频数分布直方图.
(3)条形图和直方图的区别
①条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;
②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;
③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙。
4、各种统计图的优缺点
①条形统计图:能清楚地表示出每个项目的具体数目。
②折线统计图:能清楚地反映事物的变化情况。
③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
为了较直观比较直观地表达两个统计量的变化速度绘制折线统计图时应注意纵、横坐标同一单位长度所表示的量一定要一致。
为了较直观地反映几个统计量之间的比例关系绘制条形统计图时应注意纵轴从0开始。
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)用平面截圆柱体,可能出现以下的几种情况.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)
(4)用平面去截球体,只能出现一种形状的截面——圆.
(5)需要记住的要点:
几何体 截面形状
正方体 三角形、正方形、长方形、梯形、五边形、六边形
圆 柱 圆、长方形、(正方形)、……
圆 锥 圆、三角形、……
球 圆
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算
1、有理数的概念及分类
① ②
整数和分数统称为有理数。
注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.
2、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零。
注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.
②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。
4、绝对值:
(1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
也可表示为:
;
绝对值的问题经常分类讨论;
(2)绝对值的有关性质
①对任意有理数a,都有|a|≥0;
②若|a|=0,则a=0;
③若|a|=|b|,则a=b或a=-b;
④若|a|=b(b>0),则a=±b;
⑤若|a|+|b|=0,则a=0且b=0;
⑥对任意有理数a,都有|a|=|-a|.
5、有理数大小的比较法则:
在数轴上表示的两个数,右边的数总比左边的数大(大数-小数﹥0,即右边的数-左边的数﹥0);
正数都大于 0,负数都小于0,正数大于一切负数;
两个负数,绝对值大的反而小 .
6、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。
倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为 .
7、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数同0相加,仍得这个数。
一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。
8、有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②可以利用加法则,加法交换律、结合律简化计算。
9、有理数乘法法则:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)
乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
10、有理数除法法则:
①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②除以一个数等于乘以这个数的倒数。
0除以任何非0的数都得0。0不可作为除数,否则无意义。
11、乘方的概念
(1)求几个相同因数的积的运算,叫做乘方,即
在 中,a叫做底数,n叫做指数, 叫做幂.
(2)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;
(3)据规律 底数的小数点移动一位,平方数的小数点移动二位.
注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
(4)乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④(除0以外任何数的0次方都得1) 1的任何次幂都得1,0的任何次幂(除0次)都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
12、有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章整式的加减
1、代数式
字母可以表示任何数。
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
规定:单独的一个数字或字母也是代数式。
注意: ①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 应写作 ;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作 ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 平方米
2、单项式
由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。
(1)单项式中的数字因数叫做单项式的系数.
(2)如果只是一个数字,系数是本身
(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
(4)单独一个非零数的次数是零。
3、多项式
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。
多项式中,次数的项的次数,就是这个多项式的次数. 一般说几次几项式。
4、整式
单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。
5、同类项
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系数无关;与字母顺序无关.
3、合并同类项
把几个同类项合并成一项,叫做合并同类项。
合并同类项法则:
(1)找同类项
(2)合并①各同类项的系数相加作为新的系数,②字母以及字母的指数不变
(3)不同种的同类项间,用“+”号连接
(4)没有同类项的项,连同前面的符号一起照抄
4、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
5、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
6、代数式求值------------用数值代替字母,按照代数式指明的运算进行计算
化简,求值------------①先化为最简的代数式;②再用数值代替字母,按照代数式指明的运算进行计算
第四章基本平面图形
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线(两点确定一条直线)。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(补充类比:①点到直线的距离:点到直线垂线段的长;②平行线间的距离:平行线间垂线段的长)
(3)线段的中点到两端点的距离相等。(点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。)
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
10、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
11、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
直角三角板(45,45,90),(30,60,90)可画出的角除以上角,还有15,75,105,120,135,150这些角都是15的倍数。
12、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50.
时针与分针夹角=分×5.50-时×300 (分针靠近12点)
时针与分针夹角=时×300-分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。
13、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
14、多边形
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n
过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n / 2条对角线.
15、圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
第五章一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。
6、列一元一次方程解应用题步骤:
找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答
7、找等量的方法:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。
(3)常用公式也可作为等量关系
8、列方程解应用题的常用公式:
(1)行程问题: 距离=速度×时间 ;
(2)工程问题: 工作量=工效×工时 ;
(3)比率问题: 部分=全体×比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价×折× ,售价=进价×(1+提高率), 利润=售价-成本,利润=利润率×成本;
(6)本息和=本金+利息, 利息=本金×利率×期数
(7)原量×(1+增长率)=现量; 原量×(1-下降率)=现量 (只有1次增减)
(8)周长、面积、体积问题:
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.
第六章数据的收集与整理
1、普查和抽样调查
(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据等过程。
我们经常通过调查、试验等方式获得数据信息。项目很大时,还可以通过查阅报纸、相关文献或上网的方式。
(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。
所要考察的对象的全体称为总体。
组成总体的每一个考察对象称为个体。
(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普查。
人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调查。
抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。
样本容量:样本含有个体的数目。
(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个体被选中的可能性都相等。随机调查不是调查方法。
(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的代表性和广泛性(随机性,真实性)。
2、扇形统计图及其画法:
(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(2)画法:
①计算不同部分占总体的百分比:各项数量 / 总数 ×100%。(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比圆心角度数 / 3600 ×100%)。
②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆心角度数=3600×百分比
③在圆中画出各个扇形,并标上百分比。
3、频数分布直方图
(1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上,纵轴表示各组的频数。
如果样本中数据较多,数据的差也比较大时,频数分布直方图能更清晰、更直观地反映数据的整体状况。
(2)频数分布直方图的制作步骤:
①找出所有数据中的值和最小值,并算出它们的差(极差)。
②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当数据在50~100之间时,分组的数量在5-12之间较为适宜; 组距:把所有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问题〉。)
③确定分点
④列出频数分布表.
⑤画频数分布直方图.
(3)条形图和直方图的区别
①条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;
②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;
③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙。
4、各种统计图的优缺点
①条形统计图:能清楚地表示出每个项目的具体数目。
②折线统计图:能清楚地反映事物的变化情况。
③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
为了较直观比较直观地表达两个统计量的变化速度绘制折线统计图时应注意纵、横坐标同一单位长度所表示的量一定要一致。
为了较直观地反映几个统计量之间的比例关系绘制条形统计图时应注意纵轴从0开始。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询